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We analyze the problem of the geometrical aperture between the two faces of a crack described as a
self-affine surface. We consider the contact of the two surfaces after a relative rigid-body displacement
(translation and/or rotation) of one side of the crack with respect to the opposite one. A number of
properties are obtained analytically and illustrated by numerical simulations on generated self-affine sur-
faces. The results concern the scaling of the average aperture, which is shown to include a very slowly
varying correction term (logarithmic with respect to the displacement); this affects severely the depen-
dence of the measured aperture on the displacement. These results are used to analyze experimental
data obtained on a granite sample and to estimate the roughness exponent from a global measurement.
This estimate is shown to agree with an analysis of the roughness based on profilometry measurements.

PACS number(s): 02.50.—r, 47.55.Mh, 47.53.+n, 62.20.Mk

I. INTRODUCTION

The transport properties of fractured materials is a to-
pic of very broad practical relevance in many domains
such as hydrology, civil and petroleum engineering, geo-
thermal processes, and chemical and nuclear waste dispo-
sal [1]. In the particular example of geothermics, heat is
extracted from fractured hot deep rocks by forcing a fluid
circulation between two boreholes. It is thus a funda-
mental interest to understand the flow properties in the
cracks and more generally in the fracture network in or-
der to model the heat production. Some of the phenome-
na occur at the scale of the fracture network and involve
the understanding of its connectivity, which may involve
a very complex and structured array of cracks (see, e.g.,
Refs. [2,3]) and of the influence of the distribution of
apertures [4]; however, a good understanding of the
structure and transport properties of individual fractures
[5] is mandatory to model satisfactorily the global sys-
tem.

A first key parameter is the fracture aperture which
determines partly the fracture permeability. For instance,
Witherspoon [6] and Brown [7] have studied the
relevance of the so-called ‘““‘cubic law,” which gives the
scaling of the hydraulic conductance with the aperture of
a crack with a rough boundary. Another important pa-
rameter is the roughness of the fracture walls which will
strongly influence the structure of the flow field inside the
fracture. Solving the flow field past a rough boundary is a
problem which has been addressed recently by Gutfreund
and Hansen [8] using a lattice-gas algorithm in two di-
mensions. These studies reveal the importance of an ac-
curate description of the geometry of the crack so as to
determine the hydraulic flow properties.

In Refs. [7,8], the geometry of the boundaries was con-

sidered as being described by self-affine surfaces or
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profiles. Such a geometry is well suited for describing
crack surfaces. Indeed, a self-affine geometry [9] has been
evidenced in many cracks, with various materials, load-
ing models, fracturing conditions, and sample sizes (see,
e.g., Refs. [10—15] and references therein). Such a statist-
ical description accounts accurately for the size effects in
crack roughness; in particular, it leads to predictions at
the field scale from laboratory experiments through scal-
ing arguments. Many previous experiments have concen-
trated on the identification of the self-affine geometry of
fracture surfaces, using local measurements such as sur-
face profilometry or image analysis techniques.

However, very frequently, the two facing sides of a
crack in a fractured block of material will be displaced
relative to each other. This displacement prevents the
two halves of the block from coming again in contact
after the fracturing stress is released; the effective aper-
ture is then essentially controlled by the roughness and
by the relative displacement. In the present paper, we
analyze how the macroscopic effective aperture of a frac-
ture is related to its microscopic structure and in particu-
lar to the relative displacement of the two facing sides of
the crack.

In this particular case, determining the aperture
reduces to a problem of geometry using the statistical
features of self-affine surfaces. The physical implications
of the results presented below are numerous. We have al-
ready motivated our study by the importance of flow in
open cracks for geophysics. We could have equally well
mentioned the problem of the mechanical behavior of a
rock joint. In the latter case, the aperture will allow the
determination of some crucial parameters for the macro-
scopic friction, such as the dilation angle (derivative of
the aperture with respect to the relative parallel displace-
ment). Size effects that are well documented from experi-
ments and practice are essentially phenomenologically
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described in most cases (see in particular Ref. [16] for a
broad review on these problems.) The existence of long-
range correlations in the surface topography and in par-
ticular the self-affine nature of the crack geometry may be
partly responsible for those size effects. However, in or-
der to base those speculations on a firm ground it is
essential to characterize properly the statistical proper-
ties of the aperture between two conjugated rough sur-
faces. This question is the heart of the present study.

We shall first discuss, using scaling arguments, which
type of relation is to be expected between the aperture
and the lateral displacement of the crack surfaces. We
will also discuss the case of rotations. We shall then at-
tempt to verify these predictions through the numerical
simulations on computer generated rough surfaces and
on laboratory experiments on a fractured granite block.

II. SELF-AFFINE FRACTURE SURFACES

Let us first introduce a few basic properties of such
rough surfaces, so that we can derive an analytic expres-
sion of the aperture in the following section. A surface is
said to be self-affine [9] when it satisfies a scale invariance
with different dilation ratios along different space direc-
tions, more precisely, if the surface is statistically un-
changed under the rescaling

xX—Ax , YAy, z—Az, (1)

where all different dilation ratios A; are functions of only
one of them, say A, chosen as a reference. Moreover,
since a group property is required for these transforma-
tions, the dependence of A; (i =2,3) on A, is through a
homogeneous function. This implies the existence of two
independent scaling exponents §; for i =2 and 3 such
that

A=A 2)
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For a crack in three dimensions, we chose directions x
and y located in the mean plane of the fracture. Ignoring
overhangs, which is legitimate for crack surfaces, the sur-
face is represented by a single valued function z (x,y). Al-
though it is not intuitively obvious, various topographical
measurements have revealed that x and y play similar
roles and thus §,=¢; for very different materials includ-
ing rocks. In the following, we will restrict our discus-
sions to such isotropic—in the (x,y) plane—surfaces and
thus we will call { the common value of the two scaling
exponents. Figure 1 shows a synthetic self-affine surface
characterized by a roughness exponent equal to {=0.83,
comparable to the typical value observed for cracks, and
chosen to match precisely the value measured in the ex-
periment detailed below.

Let us now use this scale invariance to express some
properties of the surface topography. As the (x,y) plane
represents the mean plane of the surface, we have
(z(x,y))=0. An interesting parameter is the spatial
correlation

C(u)={(z(x,y)—z(x +u,y))*), (3)

where the average ) is taken over x and y. We have
considered above the correlation along the x direction, al-
though this choice is not restrictive, since x and y are
considered as equivalent (isotropic surface). The function
C(u) must fulfill the prescribed invariance relation (1)
and hence C (Au)=A%C (u) (for positive A) or

26

Clu)=C(]) ) 4)

L
1

where [ is an arbitrary microscopic length scale. From
now on we will implicitly assume that u is positive, unless
explicitly stated. The symmetry u— —u is a simple
consequence of the isotropy of the surface in its mean
plane. Expanding the expression of C(u) [Eq. (3)] leads
to an equivalent form

FIG. 1. Example of a self-
affine surface with an exponent
£=0.83 and a size L =256.
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(z(x,y)z(x +u,y))

28
=1—-42|% | 5
(z(x,y)?) 1 ] )
where
C(l)
Ar=—
2(z(x,)?*) (©)

A is independent of the distance u, but it does depend on
other parameters of the surface. Indeed, the variance of
the height 02=(z(x,y)?) must depend on the size of the
surface, assuming that the short-scale features are kept
constant as the system size is varied. For a surface that
extends over 0<x <L and 0 <y <L, again using the scale
invariance (1) provides o2 «< L% and thus

A<L™¢. @)

Moreover, it should be kept in mind that albeit the
mathematical concept of scale invariance does not allow
for cutoffs, any natural system will only display such a
symmetry over a limited range of length scales whose
limits will be referred to as the lower and upper cutoff
length scales. For the case of fractures, the lower cutoff
may be given by the scale at which the microstructure of
the material becomes apparent (i.e., grain or pore size,
etc.). However, for the granite rock studied and dis-
cussed in Sec. X, the scale invariance seems to hold even
down to scales smaller than the maximum grain size of
the microstructure and hence the apparent lower limit is
given by the precision of the measurements. Experimen-
tally, it appears that an upper cutoff is seldomly observed
and, in most cases, the scaling extends over the entire sys-
tem size (once bias arising from the method of determina-
tion of the self-affine character has been considered).

III. APERTURE CORRELATIONS

Let us first analyze the case of two statistically indepen-
dent surfaces z(x,y) and z,(x,y) with the same rough-
ness exponent § and facing each other. The distance be-
tween the two surfaces a (x,y)=2z,(x,y)—z,(x,y) is again
a self-affine function with the same value of &, even if the
mean amplitudes of the roughness of z; and z, are
different.

We can also mention here the case where the two
roughness exponents of the surfaces are different. Let us
call §; and §, the roughness exponents and C,(/) and
C,(I) the amplitudes as introduced in Egs. (3) and (4).
There exists a well-defined scale Ax* for which the
roughness of the two surfaces are of the same magnitude
C, (Ax*)=C,(Ax*). Using Eq. (4), we can rewrite the
latter condition as

VvV C(l)

&
=1/C,(1)

Ax* Ax* £

1

(8)

Above the scale Ax*, the distance a(x,y) is a self-affine
function characterized by a roughness exponent
{=max({;,5,). On the contrary, at scales lower than
Ax*, a is also self-affine but with an exponent equal to
{=min(§,,§,). We assumed here that the crossover scale
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is in the range where both surfaces can be considered as
self-affine. Otherwise, only one of the two regimes men-
tioned above is observed depending on the position of
Ax* compared to the upper or lower cutoff scales for
both surfaces.

The previous results hold for the case of two indepen-
dent surfaces describing the structure of the fracture
aperture at very small length scales. Let us now handle a
more complex case, namely, the case where z; and z, are
strongly correlated, because one is simply obtained from
the other by a translation along x.

Let us first discuss qualitatively the spatial correlation
of the aperture variation between the two facing sides of
the crack when they are displaced by a distance u. At
length scales v smaller than the displacement u, the
height variations of the two facing surfaces are statistical-
ly independent. Indeed, observing the aperture over a
window of size smaller than the displacement does not al-
low one to detect the correlations between them and thus
one can use the result obtained for independent self-affine
surfaces.

On the contrary, when the observation scale v is much
larger than the initial displacement, the similarity be-
tween the two facing surfaces becomes apparent. If we
imagine the effect of adding a harmonic modulation to
the surface with an amplitude 4 and a wave-length A
large compared to the displacement u, both sides of the
crack are subject to the same modulation and the effect of
this perturbation on the aperture can be estimated to
Au /A, which vanishes with the ratio u /A. For a self-
affine surface, the amplitude on average increases with
the wavelength, but slower than A, so that the dominant
contribution to the aperture essentially comes from wave-
lengths of order u. Therefore, at these larger length
scales, the aperture is no longer self-affine but tends to be
uncorrelated. Let us now turn to a quantitative analysis
of the aperture.

Let us consider a crack that has been subjected to a
slip u along the x axis and 4 along the z axis:
z,(x,y)=2z(x +u,y)+h. It will be the subject of Sec. IV
to determine the value of A which gives rise to a single
contact between the two facing surfaces. In the present
section we simply consider A as being a constant and it
will not appear in the following discussion. The aperture
a,(x,y) is equal to

a,(x,y)=z(x+u,y)—z(x,y)+h . 9)

Using the fact that (z) =0, we have {a ) =h. Let us now
analyze the correlations in the aperture function, through

ev,u)={[a,(x,y)—a,(x +v,y)]*) . (10)

Using the definition of the aperture, we can rewrite the
function (10) in the following form, which displays a sym-
metry of this function:

ev,u)=([z(x,y)—z(x +u,p)
—z(x +v,y)+z(x+u+v,y)]*) (11)
=@(u,v) .

Moreover the self-affinity of the surface results in the
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homogeneity property
@(Au, Av)=A%¥p(u,v) . (12)

Using this invariance, ¢ can be determined from a single
variable function ¥(u)=g@(u,1) with @(u,v)=v%y(u /v).
The symmetry of ¢ implies

Wu)=uyY(1/u) . (13)

To obtain the 3 function we expand Eq. (11) and use ex-
pressions (3)-(5):

2C()
Yu)= 1% = 14w’

—1(1+u)®—11—ul¥]. (14)
The absolute value in Eq. (14) is similar to the one ap-
pearing in Eq. (4) and has been explicitly introduced in
this equation so as to describe both cases u <1 and u > 1.
This function is shown in Fig. 2 for three values of the ex-
ponent {=0.25, 0.5, and 0.75. Two limiting behaviors
are interesting.
First when u <<1, a Taylor expansion of 1 gives

$u)=2 12€

L% —g2e—1u?] . (15)

In the usual case 0 < ¢ < 1, the leading term is y(u) « u %,
Second, in the opposite limit where u >>1, we can
resort to Eq. (13) in order to extract the limiting behavior

)= 2c<1) fat—

Du %2 (16)

and hence ¥(u) approaches a constant for large argu-
ments.

From expressions (15) and (16), we deduce the follow-
ing approximate behavior of ¢ valid for v <<u or v >>u:

@(u,v)=2C (D[min(u /1,v/1)]%* . (17)

This expression describes correctly the asymptotic
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FIG. 2. Analysis of the aperture correlation function ex-
pressed through the dimensionless function ¥(u)/¢¥(w) (see
text) as a function expressed through the dimensionless function
PY(u)/P( o) (see text) as a function of the ratio u between the
scale of observation and the displacement between the two sur-
faces. Three values of the roughness exponent are shown
£=0.25, 0.50, and 0.75.

behavior u <<v or u >>v. It is also exact for all values of
(u,v) when £=0.5. Otherwise, the crossover in the vicin-
ity of u =wv is not accurately described.

The aperture of the crack is self-affine at length scales
smaller than the slip u; above this scale, the rms aperture
difference is no longer dependent on the distance. In or-
der to be more precise, let us now analyze the correla-
tions in the aperture function. Following similar lines,
one can compute the covariance of the aperture at two
distant points. This covariance is, by definition,

Cla,(x,y),a,(x +v,y))‘-§i(l% (18)
where
x(u,v)={a,(x,y)a,(x +v,y))
—(a,(x,)){a,(x +v,y)) . (19)
A long but easy computation gives
X(u,v)=%)§v2§ 1+2 2§+ -2 2;_2 (20)

In the limit v/u >>1, a Taylor expansion provides the
asymptotic expression
2¢—1)

Cla,(x,p),a,(x +v,y))=E(25—1) @2n

Since in our case § is smaller than one, the latter expres-
sion vanishes as v /u tends to infinity. Thus the aperture
at two distant points can be considered as uncorrelated
when the distance v is much larger than the displacement
u.

IV. EFFECTIVE APERTURE BETWEEN DISPLACED
MATCHING ROUGH SURFACES IN CONTACT

In this section we aim at computing the minimum vert-
ical displacement 4 (u) needed to move the two surfaces
by a distance u horizontally while keeping them in con-
tact. At the present stage we only consider rigid transla-
tions of two identical surfaces. No rotations are includ-
ed. The height 4 (u) to obtain a contact between the sur-
faces is such that the aperture a(x,y) is always positive
and reaches O at one point. (The simultaneous oc-
currence of more than one contact point has a zero prob-
ability when rotations are not considered.) Thus

h(u)=max(z(x,y)—z(x +u,y)) 22)

(x,y)
(assuming that the upper surface has been displaced by a
distance u along x).
In order to use the results of Sec. III, we partition the
surface into squares S; of size u X u so that

h;= max (z(x,y)—z(x +u,y)), (23a)
(x,p)ES;
(23b)

h(u)=max(h;) .

Let us now first estimate the terms 4;. From the previous
discussion, the two facing surfaces inside a domain S; can
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be considered as statistically independent. Therefore, the
difference d,(x,y)=(z(x,y)—z(x +u,y)) is also self-
affine. This implies that the statistical distribution p,(d)
of d=d (x,y) should only depend on the reduced vari-
able d /u?, so that

pi(d)=u"%¢,(d/u®), (24)

where the prefactor comes from the normalization.

To our knowledge, there is no general result about the
precise form of ¢,. However, in a number of cases, a
Gaussian distribution of heights can be argued for. First,
it has been found experimentally on fractures [17] that ¢,
was accurately described as a Gaussian distribution for
low-order moments. Let us also mention that other pos-
sibilities exist, such as the recently proposed multifractal
nature of the surface [18], which would render the Gauss-
ian statistics only legitimate for low-order moments.
This multifractal character, if confirmed, might affect the
validity of the proposed analysis and provide another
possible explanation for the observed properties reported
below. We will see that the simpler assumption of a
monofractal self-affine character is sufficient to account
for the observed experimental data and the validity of our
theoretical analysis is also supported by the numerical
simulations on synthetic monofractal self-affine surfaces.
We will thus assume from now on that the surface is de-
scribed by a single roughness exponent (valid for all mo-
ments of the height distribution).

Second, known algorithms, such as the one of Voss
[19], for generating artificial self-affine profiles = also
display such a distribution for the height difference when
u is large enough, although a Gaussian distribution is not
prescribed locally. (Small scale height differences still de-
pend on the details of the numerical procedure.) From
now on, we will assume that ¢, can accurately be de-
scribed by a Gaussian distribution. In the numerical and
experimental sections of this paper, we will validate this
hypothesis directly.

Using the distribution of d, we have first to compute
the statistical distribution p,(k) of h; [Eq. (23)]. The
main difficulty to obtain p, lies in the fact that the
different d over which the maximum has to be considered
are strongly correlated since d(x) is self-affine.

Some partial results may be found in the literature.
Theoretically, Lévy [20] found the probability distribu-
tion of the maximum of a random walk starting at the
origin (in 1+ 1 dimensions). A random walk is a particu-
lar example of a self-affine function with a roughness ex-
ponent equal to 0.5. The statistical distribution of the
maximum over a finite interval is a Gaussian centered in
0 and truncated to positive values. Recent extensions
[21] to fractional Brownian motion in 1+1 dimension
(i.e., a more general class of self-affine profile) have been
proposed and provide bounds for this distribution.

In fact, we do not need the complete expression of p,,
but rather its behavior for large apertures. In order to
get some indications on this limit, we first note that a re-
duced form similar to Eq. (24) should also hold
for the distribution of aperture #A; [Eq. (23)]
P2(h)=u"%¢,(h /u®). Then, we assume that the large 4
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tail of the distribution ¢, behaves as a Gaussian compara-
ble to ¢,
h 2

(25)
(ku®)?

¢,(h)~K exp

valid for large # where K and k are two constants. We
note that this form is consistent with the above men-
tioned results on random walks and fractional Brownian
motion. This precise form will also be checked directly in
Sec. VII.

Finally, from the distribution of A;, we have to com-
pute the mean value of A () from Eq. (23b). In Sec. III
we have seen that, above the scale u, the aperture can be
considered as an uncorrelated white noise. This means
that we can make the approximation that the various #;
are statistically independent. In order to estimate the
value of # we resort to a fundamental results of “extreme
value statistics” [22], which states that the expectation
value 4 of the maximum among n independent statistical
variables picked from the same statistical distribution p,
fulfills

fhmpg(h’)dh’=l/n : (26)

In our case, n is the number of squares S; in the original
surface, or n =(L /u)*. Using the rescaled form of p, to-
gether with the expression of n, we finally obtain

2

LA Q27

L

erfc
ub

where erfc is the complementary error function. Using
the asymptotic behavior of the complementary error
function, we finally arrive at the expression

h(u)<u*V1+K'In(L /u) . (28)

In Ref. [23], the above problem was addressed and the
aperture was argued to scale as A (u) < u ¢, on the basis of
a simple scale invariance argument. As shown above,
this scaling is expected to be valid for 4; in each box indi-
vidually. The fact that 4 (u) is the maximum over a num-
ber of such variables which depends on u for fixed L in-
troduces a correction term [In(L /u)]'/?, which has a
significant influence. The magnitude of the correction
term is large for small u; however, the slope of A (u)
versus u in a log-log plot approaches { when u tends to
zero because the rate of variation of the correction term
is small. A quantitative illustration of this effect is shown
in Sec. VII.

V. ROTATIONS AROUND THE z AXIS

Up to now, we have considered a rigid translation of
one surface with respect to the opposite one. We now in-
vestigate the effect of rotations. From the anisotropic na-
ture of the self-affine surface, we have to distinguish be-
tween rotations around the z axis, normal to the mean
fracture plane, and around an axis in the (x,y) plane. We
will thus investigate these two kinds of rotations one after
the other.

Let us first consider a rotation of angle w, around an
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axis parallel to z, passing through the center of rotation
Q=(x,,y,,0). For any point M in the (x,y) plane, we can
introduce the distance between the two surfaces at the
point M

—>
a(M)=z(M +w,€, XQM)—z(M) . (29)

If we call r the distance r=||.67il) I, two points which
were initially facing each other are displaced by a dis-
tance ro,. If we now combine the effect of a rotation and
a translation parallel to the x axis, this simply corre-
sponds to moving the center of rotation Q.

We now restrict our discussion to the case where the
projection of the surfaces in the (x,y) plane are disks of
radius R and of center . We can now reapply the same
technique as above assuming o, <<27. We part the disk
into boxes S;(7;,0;) whose size depends on the distance to
the origin r;. The shape of the boxes is defined in polar
coordinates as limited by 0,<60<6;,,,=60;,+w®w, and
r;<r<r;y;=ri(1+w,). These boxes fulfill the same
properties as in the case of translations. All boxes whose
distance to the origin is #; will contribute to an aperture
h; < (r;»,)*. Therefore the farthest boxes r=R will be
dominant. The number of boxes in the most distant an-
nulus is simply 27 /w,. Thus we can adapt simply the re-
sult (24) to express the aperture for a rotation w,

h(o,)=(Rw,)*V 1+K'In27/w,) . (30)

If the boundaries of the surface in the (x,y) plane are
different or if the center of rotation is different from the
center of the disk, the above result can easily be extended,
but the final result cannot be simply expressed in a closed
expression for the general case.

Let us point out that Eq. (30) is obtained from Eq. (27)
by replacing the sample size L by 27R and the translation
u by Rw,. This is equivalent to assuming that # (w,) is
determined by the regions close to the sample rim where
the displacement rw, is the largest; this is not surprising
since, in the translation case, & increased monotonically
with u. Then, the effective length over which the profile
is sampled is 27R.

VI. ROTATIONS AROUND AN AXIS
IN THE (x,y) PLANE

Let us now discuss the case of a rotation around an
axis in the (x,y) plane. The interest of rotations whose
axis lies in the (x,y) plane is not really to deal with a fixed
prescribed rotation, but rather to address the more
relevant situation where the upper surface is free to ro-
tate. Then, a stable position of the upper surface will in-
volve not one, but three (in three dimensions) points of
contact. We can imagine that a first contact is created
from a translation parallel to the z axis; then a rotation
takes place around an axis going through the first contact
point, until a second contact is created, and finally a last
rotation takes place around an axis going through both
contact points until a third contact is established such
that the center of gravity of the upper block lies inside
the triangle formed by the three contact points. If the
last condition is not met, a new rotation is to be con-
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sidered around two contacts, etc., until a stable position
is reached. The question one may ask is whether or not
this procedure affects significantly the previous results;
this will allow one to determine whether the parallel
motion procedure, which is much easier to implement
both numerically and experimentally, yields results that
are practically relevant.

The problem of rotations about an axis located in the
(x,y) plane is very different from the previous case.
Indeed, after a rotation of angle w, around the y axis, the
surface is no longer self-affine in the (x,y,z) coordinate
system. For a small angle w,, the surface is changed to
z(x,y)—z(x,y)+w,x. The fact that the surface fluctu-
ates can, however, hide this effect, but only at small
scales. At large length scales, the bias induced by the ro-
tation will become apparent in spite of the roughness.
The crossover scale x * along the x axis can be written as
w,x*=V'C(I)(x*/1)*. Thus

‘/aT) 1/(1=¢)

coylg

* —

(31)

If this rotation effect is considered together with a slip
u along the x axis, we have to incorporate the effect of
the rotation on the aperture function. As we have seen
that the scale u corresponds to a change of regime, we
have to consider two different cases.

(i) If x * as defined above is smaller than u, the aperture
can be considered as self-affine up to a scale x*, and
above this scale, the aperture will grow linearly with the
distance x. For a surface limited by a square 0 <x <L
and 0<y <L, the contact will be set first in the range
0<x <x* and we will recover the result Eq. (28) with
different constants.

(i) If, on the contrary, the crossover scale x * is larger
than u as computed from Eq. (31), then one has to take
into account the correlations in the aperture function
[Eq. (21)] which do not depend on_distance past u. The
crossover is to be written w,x* =V C(I)(u /1)¢ or

vCc(l)

a)ylg

* =

ub . (32)

The aperture will thus be self-affine with an exponent §
up to a scale u. From u to x*, the aperture will appear as
uncorrelated and finally, above the scale x*, it will in-
crease linearly with distance. If the two surfaces are
translated along z so as to establish a contact, the latter
will most probably lie in the interval 0 <x <x*.

A single contact does not provide a stable position for
the upper block. Therefore, one may inquire about the
effect of the further rotations which are needed to set
these contacts. We investigate now the rotation pro-
duced by the establishment of contact between two com-
plementary surfaces horizontally translated by a distance
u. Let A, be the first contact point obtained after a
translation parallel to z axis. A stable position requires
three contact points. The second contact point A4, is ob-
tained after a rotation around an horizontal axis going
through 4. The second contact point is expected to be
either very close | ATZZH <u<<L or very far
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| A A,||=~L>>u from A,. The first
|| Ay A, || <L) results from the fact that the probability

case (i.e.,

distribution p (|| 4, 4,]||) to have a contact at distance

—>
|| A1 A,|| is large in the immediate vicinity of 0, because
A, is already a contact point and then the aperture is

—>
small close to 4. As the distance || 4; 4,|| increases up
to the scale u the probability of contact decreases, but
above u it rises again because the displacement due to the

rotation is proportional to | 4; 4,||, and hence results the
. . —
second expectation (i.e., |4, 4,||=L >>u). In the case

—>
where || 4, 4,||<<L, the contact points (A, A4,) are
most probably unstable because the orthogonal projec-
tion of the center of gravity of the upper surface has a

small probability to lie within the distance || A_I_.ZZH. The
new contact 4, thus will act as a new center of rotation,
returning to the previous situation with A, instead of
A,.

We now focus our attention on the interesting case
I A,—zzﬂ >>y and estimate the rotation angle o, needed
to reach the contact A4,. For a rotation of center
A(x,y,) and axis y, we can describe the aperture be-
tween the two blocks as

d,(x,y,0)=z(x,y)—z(x +u,y)—(x —x,)o+h , (33)

where % is the mean distance between the two surfaces.
The angle w, can thus be written

min(d, (x,0)—w. (x —x;))=0 . (34)
x>0
As previously done in Eq. (23), we partition the x axis in
u/L =n>>1 adjacent boxes S; of size u, such that
(i —1)u <x <iu for S; and rewrite (30)

[ [dux0)
®,=min |min |——
i |xes; | x —x;
(35)

=min(w,) .
1

There the set of values w; can again be considered as ap-
proximately independent variables. As in Eq. (25), nu-
merical studies indicate a good agreement with a Gauss-
ian probability distribution ¢'(w;) for ;. From the
definition of w; given in Eq. (35) and the expression of d,
Eq. (33), (h /iu) and (ku*®/iu)? are, respectively, the mean
and the variance of the variable w;. Thus ¢'(w,) can be
written

(iuw,—h) |’

kut

Hence we can check that the probability for @, to reach a
given value w} is

¢'(w;)~K exp

(36)

Plw,>ok)= I_Inqﬁ(wi > ¥)

i=1

37

(iuw*—h) ]

i=n
= erfc
:I=Il kut

where ¢(w), the integral of ¢'(w), is the complementary
error function. In order to characterize w} we use the
asymptotic behavior of ¢(w;), through the large argu-
ment expansion of the error function, since
(iuw*—h)/ku® is large for n >>1 as checked afterwards.
Considering the dominant term for large n, we obtain

3 u 2 (0*2

- c -1
Plw,>w})=exp PIEREY: [1+0(n™ "] . (38)
A typical value (the median value) of w} is obtained for
P(w,>w})=1. A more complete analysis shows that a
similar scaling is obtained for the average value

(E+1/2)

w*=v6In(2)k*——

T [1+0(n 1] . (39)

Let us now check that the previous hypothesis
(iuw*—h)/ku®<<1 is indeed satisfied. Let us first note
that iuw? /ku® is bounded by Luw? /ku®, which can be
estimated through Eq. (39) to be of order

Lo}
ku®

Therefore, we can simplify the expression to estimate
(iuw?—h)/ku*~—h/ku®, which is itself such that
erfc(—h /ku®)~1/n. As a result, the asymptotic ex-
pression of the complementary error function used in the
previous computation was legitimate.

Let us note that Eq. (40) has a simply physical mean-
ing. The vertical displacement due to the rotation o} at
a distance L of the contact point A4, is small compared to
the roughness of the surface. Therefore the rotation an-
gle w, plays a minor role in the previous analysis of the
vertical displacement of the blocks and can be neglected
in the expression of the aperture. Therefore, the parallel
displacements, which may have been considered as’a
drastic simplification of a realistic case, appear to induce
the dominant effect. Additional rotations do not affect
the validity of the expression of the aperture.

wp 172, (40)

VII. NUMERICAL SIMULATIONS

Numerical simulations were performed to illustrate the
previous analysis and to estimate the magnitude of the
size effects given in Eq. (28). Moreover, this constitutes a
partial check of the assumption that the Gaussian distri-
bution of height differences gave rise to Gaussian distri-
bution of apertures in elementary boxes S; [Egs. (25) and
(35)]. In order to characterize this distribution we gen-
erated self-affine surfaces using a dichotomy algorithm in-
troduced by Voss in Ref. [19]. We chose a roughness ex-
ponent equal to the experimental value (i.e., £=0.83).
Figure 1 shows a typical surface generated by this
method. We imposed a normalization such that the local
roughness [i.e., C(])] is kept constant and thus the overall
roughness varies with the system size. Figure 3 gives the
histograms of d,, obtained for different u parameters such
that u /L <0.1 for a system size L =1024 (data collected
over ten samples). The histograms have been rescaled
following Eq. (24), in order to demonstrate the expected
scale invariance. A Gaussian distribution parabola shows
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2.0
0.0 r
)
=
-2.0
40 A J =
-0.10 -0.05 0.00 0.05 0.10
du’
FIG. 3. Probability distribution of the rescaled height

difference d, =|z(x,y)—z(x +u,y)| /u® obtained from numeri-
cal simulations for L =1024 (data collected over ten samples) in
a log-linear plot. The symbols are <>, u=8;®, u=32; and +,
u =64: The continuous curve is a Gaussian fit for u =32.

excellent agreement with the simulations in a similog
plot. Numerical noise is smaller than point size. Howev-
er, the data collapse for various u is not as perfect as
could have been expected for artificially generated sur-
faces. This observation is consistent with a systematic
study of size effects and measurement bias of self-affine
measurements of Ref. [24]. We also checked numerically
that the distribution p, of maxima h; over the boxes as
defined in Eq. (23) can be fitted to the scaling form simi-
lar to Eq. (24), with ¢, having a Gaussian behavior for
large and even moderate aperture.

Next, we checked the validity of the finite size effect
predicted in Eq. (28) for the aperture 4 (u) between two
complementary surfaces horizontally translated by a dis-
tance u: h(u)=<u’V1+K'In(L/u). Figure 4 shows in
log-log coordinates the mean aperture (h(u)) averaged
over 100 samples for different surface sizes L from 128 to
1024. For this computation, the overall roughness [hence

0.5
'..a'“

— o
A .®
e ief
§ 10} :
g ‘

15t

3.0 2.0 -1.0

log,,(u/L)

FIG. 4. Logarithm of the mean vertical displacement
logo[{A(u))] plotted vs log;o(u /L) for different surface sizes L
(numerical simulations averaged over 100 samples). The sym-
bols are +, L =128; < L =256; O, L =512; and @, L =1024.
The dotted line shows a power law of exponent {=0.83 for
comparison.

C(L) and to the small scale roughness C (/)] has been
kept constant. As a result, all the curves have a common
extreme point u_,, /L =0.1 on the u /L axis. One can
see that the aperture deviates strongly from the simple
expectation (u /L)¢, indicated by a straight line. More-
over, as the system size increases, almost no change can
be detected. This shows that one cannot use directly the
aperture scaling in order to access to the self-affine prop-
erties of the surface. Figure 5 shows the finite size effect
predicted in the previous sections. [h (u)/u%)? is plotted
versus In(u /L) for the same set of size L. Equation (28)
predicts a linear relation between both quantities, which
is seen to be closely followed. Deviations from the linear
behavior are confined to displacements of the order of a
few times the discretization length, so that for a given ra-
tio u /L, larger profiles approach the straight line shown
on Fig. 5.

VIII. FRACTURED ROCK SAMPLE
AND PROFILOMETRY DATA

We have studied a parallelipedic block of granite with
an initial size 25X25X 15 cm®. Two parallel notches had
been drawn in the middle of two opposite faces. The
block has been fractured in two parts. The fracture sur-
face is limited by the two notches. The size distribution of
the geometrical features of the rough surface is very
broad; their smallest dimension is of the order of a few
micrometers, while their largest size extends over several
centimeters.

We have first performed profilometry measurements
along parallel straight segments on the fracture surface.
The segment length is about 120 mm and the distance be-
tween neighboring profiles is 100 um. The measurement
is performed by lowering a detection tip until it touches
the surface, recording the vertical contact position, and
moving &x =48 um further horizontally to measure
another point. The sensitivity of the technique is 5 um
and its repeatability is of the order of 10 um. Ten such

80 . S

60 -

[<h()>’T
8

20

0 L T — —
-3.0 -2.0 -1.0
log,(u/L)

FIG. 5. Square of the rescaled mean vertical displacement
[€A(u))/u®]?® or self-affine surfaces of linear size L plotted
versus the logarithm of the rescaled horizontal displacement
logo(u /L). The symbols are +, L=128; <, L=256; O,
L =512, and @, L =1024. The straight line is a best fit to the
data which represents the predicted behavior Eq. (28).



51 APERTURE OF ROUGH CRACKS 1683

profiles z(x) are displayed on Fig. 6. The clear correla-
tion between the different profiles is a simple consequence
of their proximity.

Figure 7 displays the averaged power spectrum pointed
from the fast Fourier transforms of the ten profiles z (x).
In a log-log scale, the variation is linear over the whole
range of wave vectors k investigated so that
P(k)<k =2 This result is in agreement with the as-
sumption that the fracture surface is self-affine with a
characteristic exponent {=0.83. Let us note that similar
results have been obtained on various other crack sur-
faces [7]. Moreover, it is worth noting that the analysis
of roughness profiles with a length of several meters mea-
sured along the faces of a granite fault inside a quarry
[15] gave a very consistent estimate of the roughness ex-
ponent. This supports the suggestion that the results ob-
served in our laboratory experiments can be transported
to field measurements.

We also analyzed, from profilometry data, the
d,(x)=z(x)—z(x +u) distribution used in Egs. (25) and
(36) and previously studied for numerically generated sur-
faces (see Fig. 8). Good agreement is shown with a
Gaussian fit (in particular for ¥ =1686x), but extreme
values of u seem to depart from such a behavior. Small u
distributions display an exponential tail for large height
differences. On the other hand, for large u values, the
Gaussian distribution seems truncated. The latter effect
may result from spurious sampling artifacts, but a proper
understanding of this deviation remains to be clarified.
Nevertheless, as shown below, this does not appear to re-
sult in significant deviations from the theoretically ex-
pected behavior of the aperture as a function of the dis-
placement.

IX. EFFECTIVE APERTURE MEASUREMENT

We have analyzed the geometrical aperture of the
crack in a well controlled way on the granite samples de-
scribed above. We put the two fractured blocks in con-
tact after having translated one block with respect to the

20
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FIG. 6. Ten profiles measured on the granite rock fracture
surface used in the experiments. The profiles have been collect-
ed along parallel lines close to each others so that the large scale
roughness can be seen on different profiles. The profiles have
been arbitrarily translated vertically for clarity.
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log,,[P(K)}
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log,,(k)

FIG. 7. Averaged power spectrum of the ten profiles plotted
in log-log coordinates. A power law fit is shown on the graph
with a slope —1—2¢, giving an estimate of {=0.83+0.03.

other, keeping their orientations strictly parallel. We
first start from the position at which the two blocks are at
closest contact. This sets our origin for the relative dis-
placements. Then, we study the vertical displacement
h(8x) for which the blocks are again in contact with a
single contact point as a function of &x.

For that purpose, the upper block is held at a fixed po-
sition. The lateral displacement is limited within +10 um
by several ball point devices. Two detectors with a sensi-
tivity of 5 um allow one to control the lateral stability of
the upper block. The vertical displacement of the upper
block is limited downward by three horizontal stems rest-
ing on support plates. The height of the support plates is
adjusted when the two blocks exactly coincide and is left
fixed thereafter. Three vertical displacement detectors
are located on the upper block near each of the three sup-
port stems. The lower block rests on three superimposed
micropositioning devices controlling the displacement in
the x, y, and z directions with a precision of 10 ym.

After the initial position of the lower block has been

2.0 — e —_——

-3.0
) |
) |
=)
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50—

-800 800
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FIG. 8. Distribution of the rescaled height differences

d,(x)/ut=|z(x)—z(x +u)|/u® from experimental profilo-
metry data. Symbols are <>, u=45x; @, u=165x; —+,
u =1286x with 6x =48 um. The continuous curve is a Gauss-
ian fit to the « =1656x data.
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adjusted, it is lowered and moved laterally in the x
and/or y directions by a prescribed amount. Then, the
block is raised until a motion is detected on any one of
the three detectors. The corresponding z value corre-
sponds to the first contact and is recorded before moving
to another lateral position. A system of counterweights
allows one to lower the force necessary to lift the upper
block and to reduce the surface damage during the exper-
iments. The horizontal displacements range from 0.1 to
25 mm and are increased a roughly geometrical progres-
sion. They have been performed in the four directions
+x and Ly in a systematic way and additional points
have also been measured in other directions (e.g., 45°
from x or the y axis).

X. EXPERIMENTAL OBSERVATIONS

We have estimated the repeatability of the experiments
by superimposing experimental curves corresponding to a
same direction of displacement. The data points are
found to coincide within +20 um.

We have overlayed on Fig. 9 four curves corresponding
to four perpendicular directions of displacement tx and
+y. It is difficult to determine experimentally the origins
x =0 and y =0 with an uncertainty better than about 100
pm since this contact corresponds to a minimum value of
z around which its variation with x and y is small. We
have therefore slightly adjusted the coordinates of the
real origin with respect to our first initial determination
so that the curves corresponding to variations along *x
and *y, respectively, coincide approximately at small dis-
tances. The adjustment was always smaller than 100 um.
This allowed us to obtain a very well defined relation be-
tween the aperture and the horizontal displacement, for
any orientation of the displacement of the (x,y) plane, as
can be seen on Fig. 9 where all four curves almost coin-
cide over the whole range of variation of x and y.

This collapse of the data points onto a unique curve
implies that the structure of the roughness is isotropic in
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FIG. 9. Experimental measurement of the vertical displace-
ment h (u) as a function of the horizontal displacement u in four
directions: A, —x; A, +x; O, —y; and @, +y. h is expressed
in millimeters. A power-law of exponent {=0.83 is drawn as a
dotted line for comparison.
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the x-y plane, at least up to a distance of 25 mm,
representing about one-tenth of the sample size. A
second key point is the fact that the data points do not
follow a simple power law. If a regression to a power law
was performed on Fig. 9, in the upper range of u /L
values, we would measure an apparent exponent less than
0.7, much smaller that the measured § exponent. This
observation is quite consistent with the numerical simula-
tions reported in Fig. 4. Thus the effect of the logarith-
mic term in Eq. (28) cannot be neglected if a quantitative
analysis is to be performed.

In order to check Eq. (28), we have plotted in Fig. 10(a)
the variations of the ratio [h(u)/u*]? as a function of the
logarithm of the displacement |u| parallel to the mean
fracture surface. Figure 10(a) represents the variations
obtained when the origin of the vertical displacement
scale of the lower block corresponds to the closest con-
tact observed experimentally. We observe, more precise-
ly than in Fig. 9, that all four curves corresponding to
different directions of displacement virtually coincide.
We also observe that the linear decrease predicted by Eq.
(28) is only obtained for z > 200 um.

However, experimentally, the determination of the ori-
gin (i.e., no relative displacement between the blocks) is
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FIG. 10. Same data as Fig. 9 shown so as to test the predic-
tion Eq. (28). u and & are expressed in millimeters. (a) The raw
measured vertical displacement 4 (u) is considered. (b) A verti-
cal offset 5z =280 um (i.e., remanent aperture at closest contact)
is taken into account.
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never exact. We have already described the procedure
followed to fix the origin of the positioning horizontally.
Vertically, a perfect contact may be impossible if some ir-
reversible deformation has taken place during the frac-
ture process or if some small fragments are present on the
surfaces. If we introduction a vertical offset &z, which
corrects for this effect, and adjusts its value to 6z=80
pm, we observe a linear variation over the whole range of
u values as shown in Fig. 10(b). The best fit drawn on
this figure is, taking L =250 mm,

h(u)+8z < u®V1+1.67In(L /u) , (41)

as shown in Fig. 10(b).

The value 6z=80 um appears, however, to be large
when compared to other observations of the fracture.
Conductivity measurements to be reported elsewhere in-
dicate that the remanant aperture at closets contact
might be estimated to be 8z~40 um. One should em-
phasize that a precise determination of this remanant
aperture is extremely difficult because of the magnitude
of the displacement involved and the varying sensitivities
of different measurements. Moreover, the error bars on
the aperture for small displacements u are quite large and
thus extrapolating the fit in this region is to be considered
with care.

In summary, the experimental results confirm clearly
that the structure of the roughness is isotropic, at least up
to length scales of the order of one-tenth of the sample
size. The power spectrum of profiles varies as well
defined power law P(k)=<k ~!7% of the wave vector k,
which shows the self-affinity of the surface with a rough-
ness exponent { comparable to reported values of the
literature. The dependence of the fracture aperture on the
relative horizontal displacement u between the two frac-
tured blocks cannot be accounted for by a simple power
law, but is accurately described by the previous theoreti-
cal analysis, which includes a slowly varying correction
term.

XI. CONCLUSION

We have analyzed some properties related to the con-
tact between two self-affine surfaces which are related to
each other by a rigid body displacement. We have ob-
tained analytical results which are supported by numeri-
cal simulations. These results lead to a closed expression
for the geometrical aperture of cracks as a function of the
relative displacement of the two sides.

The mere use of a scaling invariance thus appears to be
a particularly rich and fruitful approach. Physical conse-
quences of the problem studied here can be found in es-
timating the permeability and conductivity of a crack.
This problem, of large importance in geophysical applica-
tions, is presently being investigated experimentally and
has been considered in an earlier theoretical work [23].

Other applications can be considered in the field of the
mechanical behavior of faults. Friction, wear, and gouge
formation are also intimately related to an accurate
description of the contact between rough surfaces. The
present study shows that the use of a simple geometrical
invariance of the crack roughness provides the necessary
basis for deriving general but nontrivial results.
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